This post was brought to you by Boom 3D. Boom 3D is a volume booster and equalizer app meant to give you an immersive sound experience.

Consumption of media on PCs, laptops, and smartphones continues to rise, all thanks to the streaming services. The fact that you can start watching your favorite show or a movie just about anywhere is the icing on the cake. However, if your Windows 10 PC emits weak audio, it could ruin the experience.

You don't need to worry for we have a convenient set of tips to amplify louder and better sound on your Windows 10 PC. While all of them may not work on your PC since every computer has slightly different hardware as well as sound settings. Depending on the sound card or the audio chip on your PC, it's best to try out all the options before you invest in an external speaker set.

Let's take a look.

1. Enhancing System Audio

What's new in this version. Dolby Access v3.6.181.0 Available on Windows 10 PCs with Windows 10 19H1 and above. Earlier versions of Windows 10 will receive the previous version of Dolby Access Dolby Access v3.6.191.70 Available for all Xbox users New features and resolved issues: - Support for PCs with embedded Dolby Fusion technology - Support for Xbox Series X - Improved loading time. Spatial sound free download. OMPrisma OMPrisma is a library for spatial sound synthesis, embedded in the computer-aided composition enviro.

Windows has a handful of sound enhancement features, but sadly they are often overlooked. One of them is Loudness Equalization, which when enabled boosts the maximum volume by about 150%. This feature works across most integrated sound cards, and you can find it under the Sound Settings.

To access the sound settings, right-click on the Volume icon on the taskbar, and select Sounds. Double-click on Speakers option under Playback which will bring up the Speakers Properties.

Now, navigate to the Enhancements tab and check the option for Loudness Equalization.

Note: This feature isn't available on the outdated drivers of the integrated sound cards and audio chips in Windows 10 PCs.

2. Get an Audio Booster

If your system doesn't have the support for Loudness Equalization, the best option is to invest in a third-party audio booster like the Boom 3D. This volume booster and equalizer app not only increases the overall system volume but also bundles a handful of sound related features.

Boom 3D's one of the key features is the 3D Surround which brings a positional surround sound experience to headphones. Its advantage is that it's not hardware dependent and works across multiple headphones.

Other than that, it comes with four sound effects — Ambience, Fidelity, Night Mode, and Spatial. Plus, if you want to fine-tune your audio experience, you can tweak the EQ settings and the presets.

Note: Boom 3D Windows comes with a free trial of 30 days.

3. Get Dolby Atmos for Spatial Sound

Another cool way to boost audio is to enable the 'Dolby Atmos for headphones' feature. The Windows 10 Creators Update brought this feature to many PCs, and it lets you get a spatial sound experience on your headphones.

Unlike the traditional Dolby Atmos, this feature doesn't need any special hardware or receiver. Instead, it's a digital signal processor that works by mixing the sound of your PC for an enhanced audio experience. Dolby Atmos for headphones is available for many games including Assassin's Creed, Rise of the Tomb Raider, and Gears of War 4.

To enable this feature, go to Sounds and double-click on an audio device. Once in, select the tab for Spatial Sound and select Dolby Atmos for Headphones from the drop-down list.

If you are accessing it for the first time, it'll open Microsoft Store link to activate a free trial. Do note that it's a paid feature.

4. Tinker with Equalizer Settings

The audiophile in you might know that perfect sound is actually a myth. Music is all about personal preference. So if you find the bass a tad overpowering, you can always adjust the intensity in the system equalizer.

Thankfully, Windows 10 PCs come with a native sound equalizer which lets you tweak the bands and create your custom profile. Though it's a tad basic, you can always tweak to get a better sound output than the default factory settings.

To access the equalizer, go to the Sound Settings and select Device Properties. Next, click on Enhancements and uncheck the Equalizer checkbox from the list.

Now, choose a profile according to your liking and hit the three-dot button next to it. Adjust the bands as per your taste. And yeah, it's a slow and time-consuming process, but it's worth the time. Do keep in mind that the bass frequencies are always on the left while treble is on the right. The midrange frequencies are well, in the middle.

5. Update Sound Card Drivers

If you have any issues with sound, you can also update the sound card drivers. Generally, all the major companies notify users whenever there's an update available. If that's the case, you can go to the specific website directly to download the said driver.

Alternatively, you can go to Device Manager (Windows key + X) and double-click on 'Audio inputs and outputs' to expand it. Right-click on it and select Update driver.

Spatial Sound Card Full

6. Set Multiple Sound Output for Different Media

Gone are the days when there used to be a single audio output device or an individual music player. Now, not only do we have multiple speakers and headphone hooked to our Windows 10 PCs, but there are also a variety of tools related to audio. Naturally, all these apps and devices need to have their sound output. After all, you wouldn't want the same volume levels across VLC, Chrome, and your headphones.

To set individual volumes, right-click on the volume icon and select Open Volume Mixer. All the open apps will be displayed on the right side, while the devices are on the left.

All you have to do is adjust the volume as per your liking, and you're good to go.

Alternatively, you can go to Sound Settings > Other Sound options > App volume and device preferences and set the different input and output volumes for apps and devices.

Aural Solitude

These are some of the tweaks using which you can squeeze out better and louder sound on your Windows 10 PC. Depending on the hardware and make of the device, some of these settings may not be present. If that is the case, investing in an audio booster like Boom 3D sounds practical and feasible, since it enhances the system-wide sound without delving deep into the sound settings.

Also SeeAdvertise on Guiding Tech -->


This documentation is targeted for a developer audience. For end-user support for enabling spatial sound on your device, see How to turn on spatial sound in Windows 10.

Microsoft Spatial Sound is Microsoft’s platform-level solution for spatial sound support on Xbox, Windows and HoloLens 2, enabling both surround and elevation (above or below the listener) audio cues. Spatial sound can be leveraged by Windows desktop (Win32) apps as well as Universal Windows Platform (UWP) apps on supported platforms. The spatial sound APIs allow developers to create audio objects that emit audio from positions in 3D space. Dynamic audio objects allow you to emit audio from an arbitrary position in space, which can change over time. You can also specify that audio objects emit sound from one of 17 pre-defined static channels ( that can represent real or virtualized speakers. The actual output format is selected by the user, and can be abstracted from Microsoft Spatial Sound implementations; audio will be presented to existing speakers, headphones, and home theater receivers without needing any code or content changes. The platform fully supports real-time Dolby Atmos encoding for both HDMI and stereo headphone output, DTS:X for Headphones, and Windows Sonic for Headphones encoding for stereo headphones. Finally, Microsoft Spatial Sound apps abide by the system mixing policy, and their audio will also be mixed with non-spatially aware apps. Microsoft Spatial Sound support is also integrated into Media Foundation; apps that use media foundation can successfully play Dolby Atmos content with no additional implementation.

Spatial sound with Microsoft Spatial Sound supports TVs, home theaters, and sound bars that support Dolby Atmos. Spatial sound can also be used with any pair of headphones the consumer may own, with audio rendered by the platform using Windows Sonic for Headphones, Dolby Atmos for Headphones, or DTS Headphone:X.

Enabling Microsoft Spatial Sound

Whether as a developer or a consumer, a user must enable Microsoft Spatial Sound on their device in order to hear spatialized sound.


On Windows PCs, this is done via the properties page for a given sound output device. From the Sound control panel, select an output device and click Device properties. In the Spatial sound section of the page, if the device supports spatial sound, you can select one of the available formats from the Spatial sound format dropdown.

You can also enable Microsoft Spatial Sound by right-clicking the Volume icon in the taskbar.

Xbox One

Spatial Sound Card Download Free Online

On Xbox One, Microsoft Spatial Sound capabilities are always available for the consumer, and are enabled via the Settings App under General -> Volume & audio output.

After Dolby Atmos for home theater is selected as a “Bitstream format”, support for this format is checked via HDMI Extended Display Identification Data (EDID). If the HDMI device does not support the format, an error message is displayed to the user. Note that selecting this option the first time requires the user download the Dolby Access app.

If a format other than 'Bitstream out' is selected for HDMI audio then the Bitstream format dropdown is disabled.

Select Dolby Atmos for Headphones, DTS Headphone:X, or Windows Sonic for Headphones from the Headset format dropdown under Headset audio

When Microsoft Spatial Sound is not available (for instance, when playing to embedded laptop stereo speakers, or if the user has not explicitly enabled Microsoft Spatial Sound per above), the number of available dynamic objects returned by ISpatialAudioClient::GetMaxDynamicObjectCount to an application will be 0.

HoloLens 2

On HoloLens 2, Microsoft Spatial Sound is enabled by default and uses hardware DSP offload designed specifically for Windows Sonic for Headphones.

Microsoft Spatial Sound and Audio Middleware

Many app and game developers use third party audio rendering engine solutions, which often include sophisticated authoring and auditioning tools. Microsoft has partnered with several of these solution providers to implement Microsoft Spatial Sound in their existing authoring environments. This will frequently mean the APIs discussed here are abstracted from the app’s view; they are wrapped as digital signal processing (DSP) plug-ins that the app can instantiate, and which the app’s audio implementer can use to mix to a Microsoft Spatial Sound channel bed, submix, or send individual voices to dynamic object instance plug-ins as desired. Consult with your audio middleware solution provider for their level of support for Microsoft Spatial Sound.

Microsoft Spatial Sound for Audio Renderers

Many audio renderers target a Windows Audio Session API (WASAPI) IAudioClient endpoint, where the application feeds buffers of mixed and format-conformed audio data to a WASAPI audio sink; the delivered buffers are then consumed for mixing with other clients, final system-level processing, and rendering.

Microsoft Spatial Sound spatial endpoints are implemented as ISpatialAudioClient, which has many similarities to IAudioClient. It supports static sound objects forming a channel bed, with support for up to channels (8 channels around the listener – Left, Right, Center, Side Left, Side Right, Back Left, Back Right, and Back Center; 1 low frequency effects channel; 4 channels above the listener; 4 channels below the listener). And it supports dynamic sound objects, which can be arbitrarily positioned in 3D space.

The general implementation coding pattern for ISpatialAudioClient is:

  • Create static and/or dynamic audio objects.
  • Feed each object’s audio buffer each frame so the system can render it.
  • Update dynamic objects’ 3D positions on demand – as frequently (or infrequently) as the app desires.

Note that the current output format (speakers or headphones; Windows Sonic for Headphones, Dolby Atmos, or DTS Headphone:X) is abstracted from the above implementation – the app developer can focus on spatial sound without needing to pivot based on format. Apps that do want their behavior to diverge based on output format can query the format in use, but the abstraction means an app is not required to handle these formats.

Microsoft Spatial Sound Integration with Audio Renderers

Because ISpatialAudioClient is an audio sink that consumes data, an audio renderer has several options for how to interact with and deliver audio data to it. There are three commonly used integration techniques (and for titles using audio middleware, you may see equivalent plug-ins made available based on these options):

  • 7.1.4 panners and mastering voice: Renderers that already support 7.1 endpoints may opt to simply add support for the four additional height channels that the ISpatialAudioClient static channel bed supports. Any channel panning they previously did (likely already leveraging x,y, z coordinates) can be updated to now include these height channels. This often offers the least disruption to renderer and app audio workflows, signal, flow, and mix control. Over headphones, note that the full app mix will be spatialized – so even stereo music may be perceived as “externalized” from the listener.
  • Maintain existing endpoint, plus add a 7.1.4 bus (and panners): Some titles may choose to maintain two endpoints: their existing stereo WASAPI endpoint (for “direct to ears” content not meant to be spatialized) alongside an ISpatialAudioClient static channel bed supporting 7.1.4 (or even up to Of course, managing interactions between two mixes presents additional challenges to content creators, though synchronization is maintained, as both WASAPI and ISAC instances active at a given time do use the same buffer size and clock for processing.
  • Use dynamic sound objects for certain voices or submixes: Offering perhaps the most detailed/accurate positioning, but potentially creating mix opacity, this technique involves using ISpatialAudioClient dynamic sound objects. Note that the metadata plus audio buffer is delivered to the renderer, so these sounds will be opaque to the rest of the app mix. Additionally, since there are a limited number of available dynamic sound objects, the renderer will need to consider implementing prioritization techniques – culling, sound co-location, blending to the static channel bed, and so on. Games have frequently used this technique for individual “hero” sounds, such as a helicopter that will move around above the listener.

Renderers can also mix and match between these approaches.

Microsoft Spatial Sound Runtime Resource Implications

On Windows and Xbox, the number of available voices varies based on the format in use. Dolby Atmos formats support 32 total active objects (so if a 7.1.4 channel bed is in use, 20 additional dynamic sound objects can be active). Windows Sonic for Headphones supports 128 total active objects, with the Low Frequency Effects (LFE) channel not actually being counted as an object -- so when an channel bed is in use, 112 dynamic sound objects can be active.

For Universal Windows Platform apps running on Xbox One game consoles, realtime encode (for Dolby Atmos for home theater, Dolby Atmos for Headphones, DTS Headphone:X, and Windows Sonic for Headphones) is performed in hardware at no CPU cost.

Windows Xp Sound Card Download Free

FormatMax Static Objects (Channel Bed)Max Dynamic Objects
Xbox One
Max Dynamic Objects
Max Dynamic Objects
HoloLens 2
Dolby Atmos (HDMI)12 (7.1.4)2020NA
Dolby Atmos (Headphones & Built-in Speakers)17 (
DTS Headphone:X (Headphones)17 (
Windows Sonic for Headphones17 (

Apps should also consider the following resource implications:

  • Storage/disc bandwidth: Linear content pre-authored to 7.1.4 will typically be larger than 7.1 linear content (though perceptual codecs already often take advantage of channel correlation to make this far less than the 50% more actual channels of audio data)
  • Other digital signal processing costs: Some previously global effects may now become instanced per dynamic sound object. Additionally, some content creators may wish to update some DSP effects to support additional channels or use them uniquely.

Microsoft Spatial Sound and Sound Spatialization Cues

Microsoft Spatial Sound is focused on sound positioning simulation on an idealized sphere around the listener. Windows Sonic for Headphones, DTS Headphone:X, and Dolby Atmos implement speaker mapping and virtualization to headphones, but note that many other aspects of sound spatial simulation, already typically implemented in content creator-enabled ways, are left to existing engines. Content creators continue to use the existing game tools and processes they’ve previously had for such spatial cues as Doppler, distance-based attenuation and filtering, occlusion and obstruction, and environmental reverberation.

Additional Resources

  • Dolby offers a number of support resources relating to Dolby Atmos and the Dolby Access app at

Spatial Sound Interfaces

ISpatialAudioClientEnables a client to create audio streams that emit audio from a position in 3D space.
ISpatialAudioObjectRepresents an object that provides audio data to be rendered from a position in 3D space, relative to the user.
ISpatialAudioObjectRenderStreamProvides methods for controlling a spatial audio object render stream, including starting, stopping, and resetting the stream.
ISpatialAudioObjectRenderStreamNotifyProvides notifications for spatial audio clients to respond to changes in the state of an ISpatialAudioObjectRenderStream.


When using the ISpatialAudioClient interfaces on an Xbox One Development Kit (XDK) title, you must first call EnableSpatialAudio before calling IMMDeviceEnumerator::EnumAudioEndpoints or IMMDeviceEnumerator::GetDefaultAudioEndpoint. Failure to do so will result in an E_NOINTERFACE error being returned from the call to Activate. EnableSpatialAudio is only available for XDK titles, and does not need to be called for Universal Windows Platform apps running on Xbox One, nor for any non-Xbox One devices.

Spatial sound card driver

Spatial Sound Structures

SpatialAudioObjectRenderStreamActivationParamsRepresents activation parameters for a spatial audio render stream.
SpatialAudioClientActivationParamsRepresents optional activation parameters for a spatial audio render stream.

Spatial Sound Enumerations

Download Spatial Sound Drivers

AudioObjectTypeSpecifies the type of an ISpatialAudioObject.
Comments are closed.